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Note on the parameters and the volume element of SU(n) 

S DATTA MAJUMDAR 
Department of Physics, Indian Institute of Technology, Kharagpur, India 

MS received 24 April 1972, in revised form 22 June 1972 

Abstract. A convenient parametrization for SU(n) which exhibits the chain of subgroups, 
SU(n - 1) 3 SU(n-2) . . . 3 SU(1), is proposed and the invariant volume element is calcu- 
lated. 

1. Introduction 

The unitary groups have been used extensively to classify multi-electron states of atoms 
(Judd 1963) and states of nuclei (Jahn and Wieringen 1951, Brink and Nash 1963, Hecht 
1965). They have also been used to study the properties of elementary particles (Salam 
et a1 1965, Pais 1966) and have, in fact, brought some order in the confusion created by the 
discovery of too many particles. Considerable attention has, therefore, been given in 
recent years to the structural properties of these groups and many important results have 
been obtained. However, in spite of the large number of publications on the subject the 
only two groups which have so far been studied in detail are SU(2) (Yutsis et a1 1962) and 
SU(3). This is primarily due to the fact that the complexity of the computations increases 
extremely rapidly from SU(2) to SU(3) and, in general, from SU(n) to SU(n+ 1). 

The purpose of the present note is to derive a few results on SU(n) (Itzykson and 
Nauenberg 1966, Ciftan and Biedenharn 1969, Mani et a1 1966) which are valid for all n 
and which may be of use in calculations involving integrations over the group manifold. 
First, the group is parametrized in a way which clearly exhibits the chain of subgroups, 
SU(n - 1) 3 SU(n - 2) . . . 3 SU( 1). The parametrization is, strictly speaking, not new, 
but is convenient for finding the matrices of finite transformations in an arbitrary irre- 
ducible representation of the group. Once the representation matrices are known it 
becomes possible, in principle, to calculate the Clebsch-Gordan (CG) coefficients by the 
method of group integration discussed in earlier communications (Majumdar 1969a, 
1969b). The invariant volume element required for the integration is derived in Q 3. 

The groups SU(n) for n = 3, 6, 12 have been used by many authors as possible 
symmetries of elementary particles. In the study of reactions with two incoming and two 
outgoing particles belonging to the irreducible representations of one of these groups 
and in relating the amplitudes in crossed channels (Sharp 1968) the CG coefficients of 
the group play an important role. Evaluation of these coefficients was the prime motiva- 
tion behind the present work. No systematic investigation of the CG coefficients of 
SU(n) has been carried out for values of n beyond 3. 

2. Parametrization 

To obtain a set of parameters for SU(n) appropriate to the decomposition 
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0 u'(n) = 1 ei61 i 
0 V(n-1) 

SU(n) 3 SU(n- 1 ) .  . . 2 SU(1) we start from Murnaghan's (1962) form of the U(n) 
matrix : 

-sin e n - ,  e-'""-' -case,-, 0 . . .  

cos en- -sin6,-,e'un-1 0 . . . . . .  

0 0 1 

Next, let Pn be a permutation matrix with 1 in the (m, m+ 1) positions and -( - 1)" 
instead of 1 in the (n, 1) position, and let Dl,(d) be a diagonal matrix with exp(id) in the 
(1, 1) position, exp( - id) in the ( r ,  r )  position, and unity in all other positions. Applying 
the transformation P,,U'(n)P; to U'(n) and making some simple manipulations we then 
obtain the general SU(n) matrix in the form 

where 
T(n)  = o l r ( ~ ~ ) U 1 2 ( $ 2 9 ~ 2 ) . . .  u 1 , n - 1 ( $ n - 1 2 E n - 1 h  

$ t  = - L - 1 ,  21 = g n - t ,  fort = 2, . . . ,  n - 2 ;  

$ n - 1  = - 4 1 5  @ n - 1  = 0 1 ,  

p = +7c+6n-2, g =  - @ - a  2)7c + on- 1 > (4) 
M is the U(n)  generator with unity in (1, n), (n, 1) positions and zeros in all other 
positions, and Y, is a diagonal generator with l/n in the first n - 1 positions and - (n - l)/n 
in the (n, n) position. From the relations (4) and from Murnaghan's (1962) analysis we 
see that I),,- is a longitude angle and the remaining 2n - 2 parameters explicitly appear- 
ing in (3) are latitude angles. 

(3) is the desired form (Nelson 1967) of the SU(n) matrix with exp(-ipM) in the 
middle, two SU(n - 1) matrices on the two sides, and the subgroups SU(r) of lower 
dimensions clearly in evidence. This is, however, not the only possible form of the SU(n) 
matrix with these properties. One can, clearly, write it in an alternative form with the 
factors of T(n) decreasing in size from left to right. In fact, by transformations of the 
type Q,SU(n)Qn-' (where Q, is a permutation matrix with - 1 instead of + 1 at certain 
places) it is possible to write the SU(n) matrix in a variety of forms (Holland 1969) all 
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having the desired properties. A particularly interesting form, which has some practical 
advantages, can be obtained by writing the matri)r of the subgroup SU(n - 1) also in the 
form ( 2 )  but arranging its factors in the reverse order. A similarity transformation 
U Z 3 (  -&, O)U2,U23($, 0) applied to U2,(r = 4, . . . , n )  on the right hand side then gives 
the SU(n) matrix a symmetrical form. 

Once the SU(n) matrix is cast into one of the above forms it becomes possible to 
determine the representation matrices of finite transformations. As in the case of SU(3) 
(Majumdar and Basu 1970) the difficulties of calculation are all contained in exp( - ipM), 
the only element of SU(n) proper occurring in (3) .  Since 

U , , ( - ~ , O ) e x p ( - i ~ ~ ) ~ , , ( $ ,  0) = exp(-ipa,) 

and exp( - ipa,) can be represented by ordinary rotation matrices, the problem reduces 
to the calculation of the matrix elements of K ,  = U2,( -h, 0). Relations (analogous to 
(11) and (12) of Majumdar and Basu 1970) between the eigenvalues of the diagonal 
generators for the initial and the final states of the matrix elements are obtained easily 
by noting that a traceless diagonal generator after displacement through K ,  remains 
traceless and diagonal. The actual evaluation of the matrix elements of K ,  is, however, 
not so simple and requires a knowledge of the basis states. 

3. The volume element 

We now proceed to calculate the invariant volume element (VE) of SU(n) in terms of the 
parameters defined in the previous section. We give small increments to the n2 -- 1 
parameters occurring in the general SU(n) matrix U and carry the infinitesimal matrices 
(IM) by successive similarity transformations to the position on the extreme right of U. 
The matrix U ,  thus, changes to U( 1 + 6U). If 6U is now expressed as a linear combination 
of the generators of the group then the coefficient of each generator will represent a row 
of the Jacobian determinant for the VE. Let us now apply a similarity transformation to 
6U and express q6Uq- (where q is any element of SU(n)) as a linear combination of the 
generators. It is easy to see that this will have the effect of multiplying the Jacobian 
by the matrix 44) of the adjoint representation of the group. Since the adjoint repre- 
sentation of SU(n) is unimodular the value of the Jacobian remains unaffected by t’he 
similarity transformation. This result can be utilized to simplify the calculation of the 
VE, for, instead of bringing the IM to the right of U we can now bring them to the left 
of U ,  or, to a position between any two consecutive factors of U occurring in (3) .  It is 
found convenient to choose this position between exp(-ipM) and the factor cor- 
responding to the subgroup SU(n - 1). When all the IM are brought to this position (which 
will be called ‘the position R’) and their sum is expressed as a linear combination of the 
generators, it becomes obvious from an elementary property of determinants that the 
VE of SU(n) contains that of the subgroup SU(n- 1) as a factor. Thus, one can write, 
dl/, = dl/,- dG. To calculate dG we first displace the infinitesimal part of exp( -i/?,Y,) 
to the right and bring it to the position R discarding the generators of SU(n - 1) arising 
in the process. It is easily seen that this IM contributes only an unimportant numerical 
factor to the VE. Next, we carry the infinitesimal parts of T(n) by successive similarity 
transformations to the position R and again omit the generators of the SU(n- 1) sub- 
group, that is, the elements gij (i, j # n) of the resulting matrix lg(. As it belongs to the 
diagonal generators the element g,, can also be omitted. Thus, we are left with the 2n - 2 
elements gni ,  gin (i # n) which alone enter into the calculation of dG. 
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If the I M  assumes the form 1; :I after reaching the position S immediately before 
U 2($2, a2),  then after passage through exp( - ipM) its last row becomes 

g,, = - f i  sin 2p(h11 +is)-iw, 

g,, = - is inpe"h, ,  ( i = 2  , . . . ,  r - l , r + l ,  . . . ,  n-l), ( 5 )  

g,, = -i sin p e"' hl , ,  

where s and w are the infinitesimal increments of CT and p respectively. The rows of the 
Jacobian determinant for dG are formed with the elements g,,, g,, (i # n)  of the matrix 
lg/. It will be seen presently that h ,  is purely imaginary and h,, = - hT, ( r  = 2 , .  . . . n - 1 )  
are complex quantities with nonvanishing real and imaginary parts. From equation (5) 
i t  is, therefore, clear that sin 2p occurs in only one row and sin p in 2(2n- 2) rows of the 
determinant. When these p dependent factors are separated, dG takes the form 

(6) dG = (sin p)2n-4 sin 2 p  dp dH 

where dH contains only the 2n - 4 variables $ m ,  x,.  
In order to calculate dH we displace the infinitesimal parts dU,, of U l m ( $ m , x m )  

to the left until they reach the position S .  After the first displacement the IM assumes the 
form 

dUlmU;d = -2iT\"a, sin' $,+ T(T)e-lzm($am sin 2$,-fm) 

where the nonzero elements of the matrices Tp' ,  T',"' are 

(2T$"),, = -(2T\"),, = ( T ( p ) l m  = ( T y m 1  = 1, 

and f,, a, are the increments of $,, a, respectively. In carrying the IM further to the 
left we note that, if any element is created at any stage of the operations outside the first 
row and the first column, then it remains unaffected by the subsequent operations. Such 
elements can be discarded as soon as they are created. The determination of the elements 
in the first row and column is, thus, greatly simplified, and one obtains for the elements 
in the first column the expressions 

n-  1 

h , ,  = C xmPr51-1, h n - 1 , 1  = Y n - l P n - 2 ,  
m = 2  

m = r +  1 

where 

P, = A 2 A 3 . .  . A,,  

The Jacobian for dH is 

B ,  = P, = 1, A ,  = COS $,, B, = eizm sin $,. 

a(h21 , . . . , h  "-1,l~hl2,...~hl,,-l). 
ab,, . . . ,an-1,f2,. . . > f n - l )  

When h,,  , h,, are replaced by the linear combinations, e-iurhr, 
takes a very simple form and is found to have the value 

e'"? h,,, the Jacobian 

(P2P3 . . . Pn-2)2 sin 2$2 sin 2$3 . . . sin 2$,,- ,. 
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The V E  of SU(n), therefore, takes the form 

dK = d& ,[(sin sin 2,u (cos $ 2 ) 2 n - 6  (cos $ 3 ) 2 n - 8 .  . . (cos $n-2 )2  

x sin 2$2 sin W 3 . .  . sin 2$,- lld(Bn, p, 0, $2,  a 2 , .  . . , $n- 1, a,- 1). (9) 
For n = 3 the formula reduces to dV3 = dV2)sin2 ,u sin 2,u sin 2$21 d(P3, ,u7 0, az). This 
agrees with the expression obtained previously (Majumdar 1969a, 1969b) for the V E  
of SU(3) if we take the general element of the SU(2) subgroup to be of the form 

P = P 3 7  v = ,u, y’ = 2 0 - u 2 ,  U; = -2t+h2, a; = u 2 .  

The general element of SU(3) then takes the form given by Nelson (1967). 

and set ,-iZ3T3 ,-i52T2 e-i7T3 
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